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This is an extended version of my talk at the “Primi d’Italia” National Festival held on 30
September 2023 in Foligno. This work represents a part of my long-standing popular science activity
within the frameworks of “Culinary Universe”.

“If Narcissus was turned into a flower,
I want to be metamorphosed into Macaroni.”

Fellippo Sgruttendio, Neapolitan poet of the eighteenth
century

FIG. 1. Festival “Primi d’Italia” September 2023.

Each and everyone knows a lot about spaghetti, and
many of you have cooked it at home. But have you
ever thought about the physical processes taking place
in the pot where pasta is cooking, and producing a cor-
rectly boiled “pasta” (in accordance to Italian standards)
as a result? Have you ever asked yourself what hap-
pens inside spaghetti when it is floating in the boiling
water? Why should we always follow the cooking time
instructions specified on spaghetti packaging? Why is
the cooking time different for different types of pasta?
How does cooking time depend on the shape of pasta
(classical spaghetti with different diameters, rigatoni or
bucatini, etc.)? Does the cooking time depend on the
location: are you making pasta at the seaside or in the
highlands? When bent, why does an uncooked spaghetti

strand (“spaghetto”) almost never break into two pieces
but into three or four? Why do spaghetti strands never
tie into knots during cooking? How do you select the
type of pasta, if you already have a sauce, so that the
dish will be hot and tasty?
Below we will try to gain insight into the physics of

the spaghetti cooking process and find the answers to
some of the questions that may arise while the interested
audience waits for a pot of pasta to boil in anticipation
of a hearty dinner.

I. A GLIMPSE INTO A HISTORY OF PASTA
AND ITS MANUFACTURING

Contrary to popular opinion, pasta was not brought to
the West by Marco Polo after his trip to China (1295). In
fact, its history began much earlier on the Mediterranean
coast, at the time when the prehistoric man was leaving
the nomadic lifestyle behind and started settling down
and growing grain for food. The first flat cakes baked
on top of hot stones were mentioned in the Old Testa-
ment (Genesis and Kings). In the first millennium B.C.,
Greeks were already making a thin layered pasta; they
named it “laganon”. This word came to ancient Romans
in the form of “laganum”, and may well have became the
source for modern term “lasagna”.
Etruscans were also preserving thin layers of pasta.

With the growth of the Roman Empire, pasta started
spreading throughout Western Europe. Reliance on
pasta as a way to preserve grain products emerged with
the need to transfer food supplies during the periods of
tribal migration. In Sicily, pasta was introduced by Arabs
when they conquered the island in the tenth century. Si-
cilian pasta named “trie” may be considered the ancestor
of spaghetti. It was shaped in thin strands, and the name
originated from the Arabic word “itryah” (flat cake cut
into strands). People living in Palermo started making
pasta in the beginning of the second millennium. Based
on a detailed will, probated by a Genoa notary public
Ugolino Scarpa, we can positively argue that by 1280
macaroni products were already consumed in Liguria. It
is known from the History of Italian Literature that pasta
has attracted the attention of such writers as Jacopone
da Todi, Cecco Angiolieri, and Felippo Sgruttendio. Ul-
timately, in Boccaccio’s Decameron macaroni became a
symbol of sophisticated gourmet food.
The first guilds of pasta makers ( “Pastai”) with their
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own charters were created in the sixteenth century in
Italy, where they received political and public recogni-
tion. At that time macaroni was regarded as a food for
the rich, especially in the provinces which did not grow
their own durum wheat (e.g., Naples). The invention of
the mechanical press resulted in lowered production costs
and hence the price of the product. As a result, by the
seventeenth century pasta turned into one of the staple
foods consumed by all social classes; now it is widespread
in all countries of the Mediterranean basin. Naples has
become a major center of pasta manufacturing and ex-
port. There, pasta with basil tomato sauce or sprin-
kled with grated cheese is sold on every street corner.
In Northern Italy pasta became popular at the end of
the eighteenth century mainly due to Pietro Barilla, who
opened a small factory in Parma and later became a ma-
jor producer in the Italian food industry.

Modern methods of pasta production are primarily
based on the process of extrusion (pushing out through
holes) and dragging. Extrusion was invented and used for
the first time in the manufacture of long metal compo-
nents with specified cross sections (see Figure 2). Extru-
sion processes are based on the property of fluidity and
on subsequent pushing of material through a rigid die by
means of compression. It can work both in cold and hot
conditions. Dragging is a process similar to extrusion,
the only difference being that in the case of dragging the
material is pressed through the die located at the vessel’s
outlet and thus it becomes a process of stretching rather
than compression. This method is used by the metal-
processing industry for cylinder, wire, and pipe manufac-
turing. It allows reduction of the diameter of metal wire
to 0.025 mm. Other materials that can be processed by
extrusion are: polymeric compounds, ceramics, and food.
Dies used to produce spaghetti are shown in Figure 3.

II. A SCIENTIFIC WAY OF SPAGHETTI
COOKING

Before we begin, let us derive the principal formula of
culinary: the expression relating the cooking time of the
boiled piece of meat with its size.

Suppose that a spherically symmetric homogeneous
piece of meat (of the radius R) with an initial tempera-
ture T0 is placed in an environment with a fixed temper-
ature Text maintained. How much time does it take for
the temperature of the meat in the center of the ball to
reach the same temperature as the environment?

In mathematical physics, the process of heat transfer
inside a sphere is described by a differential equation

∂T (r, t)
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where T (r, t) is the temperature at a point r at time t, κ
is the thermal conductivity of the meat, ρ is its density,
and c is the specific heat. Since the water is boiling in
a saucepan, the temperature at the surface of the sphere

FIG. 2. Extrusion process is based on the property of fluidity
and on subsequent pushing of material through a rigid die by
means of compression.

FIG. 3. Spaghetti die.
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at any instant of time remains constant and equal to
Text = 100◦C:

T (r = R, t ≥ 0) = 100◦C. (2)

We took the meat from the refrigerator, so at the time
when it was dropped into the water, the temperature was
T0 = 4◦C throughout its volume:

T (0 ≤ r ≤ R, t = 0) = 4◦C. (3)

Eqs. (1)-(3) determine so-called problem of solution of
differential equation with the boundary conditions. How
to deal with them is well known for mathematicians and
knowing the numerical values of the thermal conductivity
of meat, its density and specific heat they will be able to
accurately write a recipe for cooking broth.

Nevertheless, let us try to figure it out by ourselves us-
ing the dimensional analysis method. The temperature
of denaturation of meat coincides by an order of magni-
tude with the boiling point of water (differs from it by
20 − 25%). Therefore, we assume that the time of “de-
livery” of the necessary temperature to the center of the
solid sphere depends only on its material parameters and
size: the thermal conductivity of the meat, its density,
specific heat and radius. Therefore, we seek the depen-
dence of the required time on the size of the sphere in
the form:

τ = καρβcγRδ. (4)

By comparing dimensions, we write:

[τ ] = [κ]
α
[ρ]

β
[c]

γ
[R]

δ
. (5)

The dimension of the thermal conductivity [κ] = kg·m
s3·K .

Substituting it, side by side with the dimensions of den-
sity ([ρ] = kg

m3 ), specific heat ([c] = J
kg·K ) and radius

([R] = m), into Eq. (5) and then comparing them in the
right and left hand sides, one finds: α = −1, β = γ =
1, δ = 2 . Thus, we conclude that

τ = C0R
2/χ, (6)

where C0 is an unknown constant of the order of unity
and χ = κ

ρc is called the coefficient of temperature con-

ductivity. Substituting the quantities κ = 0, 45 W
m·K ,

ρ = 1, 1 · 103 kg
m3 , c = 2, 8 · 103 kJ

kgK we find that for the

meat χ = κ/(ρc) = 1, 4 · 10−7 m2

s .
Consequently, a half kilogram piece of meat should be

cooked for about an hour and a half. The estimate is in
some way exaggerated, since we do not distinguish in its
process the temperature of denaturation from the boiling
point, but the order of magnitude is correct.

However, we ignored the time required for carrying out
of the denaturation process itself. In most of cases, this
time is so short that it can be neglected with respect to
the “delivery” time. Yet, the connoisseurs of Chinese cui-
sine are familiar with another process which can be used

to cook meat much faster. It is called in Chinese “Shuan”
( “rinse” or “instant-boil”). It consists of soaking the
thin-cut sliced beef or mutton in the boiling soup. Sur-
prisingly that in only 10 seconds the sliced beef changes
its color from pink to white or gray, indicating the slice
is ready to eat. The beef slice becomes ready even while
remaining between the chopsticks. To describe mathe-
matically such process it is enough to replace in Eq. (6)
the radius of the sphere by half of the thickness of the
thin-cut slice L and to add the time required for denat-
uration process:

τslice = τdenat + C0
(L/2)

2

χ
. (7)

Let us “recycle” Eqs. (6)-(7) for the process of pasta
cooking. In the flour, molecules of starch are grouped into
granules with diameter of 10–30 microns, which, in turn,
are surrounded with different proteins. In the process
of pasta fabrication two of them, gliadin and glutenin,
combine with water, unite, and form a continuous net,
called gluten, which is strong and has low permeability
for water molecules. This net covers the starch granules.
Cooking time is directly related to the capacity of the
starch molecules (surrounded by gluten in the process of
pasta drying) to absorb water, which begins penetrating
through the gluten network and diffuses to the inward of
pasta as soon as it is placed in the pan of boiling water.
At a temperature of about Tg = 70◦C, starch molecules
begin forming a gel-like compound, which hinders water
absorption. Pasta is considered “al dente” (to the tooth)
the moment when the gel-like starch absorbs the mini-
mum amount of water necessary to make it sufficiently
soft. Hence in order to cook pasta it is necessary to de-
liver hot water inside the initially dry spaghetto.

Thus, one of the necessary conditions for the prepara-
tion of pasta is the same as when cooking meat: the tem-
perature inside it should be increased to a certain specific
value (in the case of pasta it is 70◦C). The second con-
dition, in comparison to the boiling of meat is new one:
the water here should penetrate inside the originally dry
pasta. Both of these conditions have to be fulfilled dur-
ing the cooking process. Indeed, neither the heating of
dry spaghetti in the stove, nor their prolonged holding in
cold water will lead to the appearance on the table of a
plate of mouth-watering pasta.

The Eq. (6) was obtained as a result of the dimensional
analysis of the heat transfer equation. Although we an-
alyzed it in the simplest case of a spherically symmetric
specimen, the result remains valid for a cylindrically sym-
metric “spaghetto”. Moreover, fortunately, the process
of water diffusion from the outside to the center of the
“spaghetto” is described by the equation of the same type
(the diffusion equation) as that one for the heat transfer,
but the latter being written for the concentration of wa-
ter instead of the local value of temperature. As a result,
the spaghetto’s cooking time is related to its diameter by
the relation of the same type as Eq. (7):
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τsp = ad2 + b. (8)

where d is the spaghetto’s diameter. The coefficient a is
determined by the physical properties of the pasta (its
temperature conductivity and, what is new, the diffusion
coefficient), while the coefficient b characterizes ... the
nationality of the eater. In fact, if the first term in the
Eq. (8) determines the delivery time of water and heat
to the center of the spaghetto, then the second tells us
how long these factors affect the central part. That is
why for Italians, who prefer to eat the pasta in a degree
of readiness “al dente” (“on tooth”), the process of the
gel formation of starch occurs not in the whole volume:
the latter remains relatively firm at the central part of
spaghetto. As a result, as we will see below from the
analysis of experimental data, the coefficient b turns to
be negative for them. In other countries, spaghetti lovers
believe that the pasta should be well-boiled and the time
that they cook pasta can significantly exceed the one in-
dicated on the packaging by the Italian manufacturer.

The starch gelification temperature, Tg, is constant
while the boiling temperature of water, Tb, depends on
the height with respect to the sea level, H. Consequently,
the coefficient a = a (H) depends on H and hence, cook-
ing time τsp = τsp (H). The recommended cooking time
on the packaging corresponds to the sea level, where
Tb = 100◦C. At high altitudes, where water boils at lower
temperatures, cooking time should be extended. In the
extreme case of Everest (its height is 8,848 m) Tb = 73◦C,
which is very close to Tg and pasta can be hardly cooked
well at all.

Let us now go to a supermarket and buy every kind
of cylindrically shaped pasta: capellini, spaghettini,
spaghetti, vermicelli, bucatini. Read and collect in Table
1 the recommended cooking times (the column “Experi-
mental cooking time”. Then take a slide gauge, measure
the corresponding diameters and fill out the same table
(the column “diameter, external/internal”):

Table 1

Type of pasta
Diameter, exter-

nal/internal (mm)

Experimental

cooking time (min)

capellini no.1 1.15/- 3

spaghettini no.3 1.45/- 5

spaghetti no.5 1.75/- 8

vermicelli no.7 1.90/- 11

vermicelli no.8 2.10/- 13

bucatini 2.70/1 8

In order to find the numerical values of the coefficients
a and b it is enough to write the equation (8) using the
data from two rows of our Table 1:

t1 = ad21 + b (9)

t2 = ad22 + b (10)

and to solve the system of these two simple equations.
As the reference case, we choose the data for spaghettini
no. 3 and vermicelli no. 8. This gives:

a =
t2 − t1
d22 − d21

= 3.4min /mm
2

b =
d22t1 − d21t2
d22 − d21

= −2.3min .

We bought the Italian pasta, and the recommended cook-
ing times on the packaging are given to obtain the “pasta
al dente”. Consequently, one can see that the coefficient
b for Italians is indeed negative.
Having the numerical values of the coefficients a and

b we can check how our formula works for other types
of cylinder-shaped pasta. The results of our calculations
can be found in Table 2 and show very good agreement
with the experimental data for all rows except the two
extremes: capellini and bucatini.

Table 2

Type of pasta
Experimental

cooking time (min)

Theoretical

cooking time (min)

capellini no.1 3 2.2

spaghettini no.3 5 5.0

spaghetti no.5 8 8.1

vermicelli no.7 11 10.0

vermicelli no.8 13 13.0

bucatini 8 22.5 ?!

This is a typical situation in theoretical physics: pre-
dictions of a theory have a range of validity correspond-
ing to the assumed simplifications made for this theory.
For instance, let us take a look at the last row of the
table: for bucatini the difference between the theoreti-
cal and experimental values is striking: 22.5min versus
8min. This contradiction reflects an important fact: the
range of possible thicknesses for all varieties of a whole
cylinder-shaped pasta (capellini, spaghetti, vermicelli) is
very narrow: 1 mm only. Indeed, our calculation of the
“al dente” cooking time for bucatini in the approximation
of the uniform cylinder gave 22.5min, which would com-
pletely boil the periphery of such a thick “spaghettone”
into mush.
The way to make such a thick spaghetti edible was

found empirically: a hole should be made in the spaghetti
strand along its axis. In the process of cooking, water
enters through this hole, and there is no longer a need to
deliver it to the core from the outside. One can try to
modify the formula (8) deducting the internal diameter
from the external one, and immediately the theoretical
result comes close to the reality:
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t = a (dext − dint)
2
+ b ≈ 7.5min .

Nevertheless, one should keep in mind that the hole in the
pasta cannot be less than ∼ 1 mm in diameter, otherwise,
due to capillary pressure,

Pcap =
4σ (T = 100◦C)

dint
∼ 200Pa,

water will not be able to enter into it. The value 200Pa
corresponds to the pressure a couple of centimeters of
water above the cooking pasta.

Another deviation of theory from reality occurs for
very thin pasta. The reason for this error is obvious:
speaking about cooking pasta “al dente” we have chosen
the parameter b as negative: b = −2.3min . Formally,
this means there should exist a pasta thin enough to not
even need cooking at all to be eaten “al dente”. The cor-
responding critical diameter dcr can be determined from
the relation:

τcr = ad2cr + b = 0,

which gives

dcr =
√
|b|/a ≈ 0.82mm.

One can see that the real diameter of capellini (1.15 mm)
is not far from this critical value, so the underestimated
capellini cooking time in Table 1 is the result of this
limitation of our model.

III. SPAGHETTI KNOTTING

Cooked spaghetti strands entangled with each other
present a complex tangle in hot water, however, the au-
thors of this book have never seen them knot themselves.
The reasons why this does not happen can be learned
from a new field in statistical mechanics: the statistics of
polymers.

The probability of a long polymer chain self-knotting
is determined by the expression [1]

w = 1− exp

(
− L

γξ

)
,

where L is the full length of a polymer, ξ is the charac-
teristic length at which the polymer can change its di-
rection by π/2 and γ ≈ 300 is a large factor, obtained as
a result of numerical and theoretical modeling. Apply-
ing this formula to spaghetti, where ξ ≈ 3 cm, one can
find the length Lmin when the probability of self-knotting
becomes noticeable (w ∼ 0.1) :

exp

(
−Lmin

γξ

)
≈ 0.9

which gives

Lmin ≈ γξ ln 1.1 ≈ 30ξ ≈ 1 m.

The length of a standard spaghetto is 23 cm and this is
not long enough to form knots.

IV. THE SECRETS OF MIXING OF PASTA
WITH SAUCE

The rules of good etiquette prescribe to start eating at
the same time everyone is sitting at the table. However,
at the Italian table, an exception is made for the first
dish, pasta: it is eaten immediately, as the plate appears
on the table. The pasta should be hot. However, it gets
to the table not directly from a pot of boiling water: first
it is discarded in a colander and mixed with the sauce.
It is clear that this process takes some time and can be
long. Then the paste will cool down and the pleasure will
be destroyed.
In order to understand what time is required to mix

the sauce and pasta, we start with a simple model: let the
viscous liquid flow through the cylinder under the action
of gravity (this is the simple model of the pasta in which
the sauce flows). The stationary flow (Q = ∆M/∆t) of a
liquid in a pipe of diameter D under the effect of pressure
difference ∆P is determined by the Poiseuille formula

Q =
πρ∆P

27ηl
D4,

where η is the viscosity of the fluid, ρ is its density, and
l is the pipe length. On the other hand, the magnitude
of the flow is determined by the mass of fluid flowing
through the cross section of the pipe per unit time:

Q = ∆M/∆t =
1

4
πρD2∆l/∆t.

Comparing these two expressions and assigning the pres-
sure difference to the effect of the gravitational force
∆P = ρg∆l we find

∆t

∆l
=

32

ρg

( η

D2

)
.

We see that the rate at which a viscous liquid fills the
tube is proportional to the ratio η/D2.
This formula is obtained in the model of fluid flow in

a gravitational field through a vertically arranged tube,
so the acceleration of free fall g is included in the an-
swer. Yet, it is clear that the nature of the acceleration
is insignificant: with the same success, g in this formula
can be replaced by the acceleration which pasta acquires
from being stirred by a ladle.
Above we have considered liquid flowing inside the

pipe. Nevertheless, it is clear that if several tubes are
tightly arranged side by side, the liquid between the tubes
will flow more or less at the same speed as inside them.
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Thus, we arrive at the conclusion that the characteristic
time of pasta stirring is

τmix ∼
( η

D2

)
.

The greater the viscosity of the sauce, the larger the di-
ameter of the pasta should be. It would be hard to mix
well the finest capellini with a viscous “pesto genovese”:
the latter naturally combines with short “trofie”. And
vice versa, liquid tomato sauce just drains to the bottom
of the plate being mixed with huge “paccheri”. So it is
better to leave the cherry tomatoes in it, and also dress
the sauce with pieces of zucchini and shrimps.

FIG. 4. Different types of Italian pasta: trofie, paccheri.

The obtained formula also helps us to understand the
empirical rules of Italian cuisine. Usually, pasta and
sauce are prepared at the same time, the pasta is cooked
in a saucepan, and the sauce in a frying pan. In the
hands of a good chef, they arrive to the state of readi-
ness almost at the same time. Discarding the pasta in a
colander and decanting the water, he sends pasta to the
pan, where it mixes with the sauce. Viscosity drops no-
ticeably with increasing temperature, so the mixing time
of the pasta with the sauce boiling in the frying pan will
be significantly shorter than if the sauce was taken out of
the refrigerator. In addition, the pasta does not lose heat
during its mixing with the sauce. Another subtlety. The
pasta should be boiled in a saucepan for slightly less time
in comparison with the time recommended on the pack-
age. Being stirred with sauce in a pan it continues to be
cooked and “gathers additionally” the missing minutes
in order to achieve the “al dente” condition.

V. BREAKING A SPAGHETTI STRAND

In the beginning of this chapter, we mentioned another
interesting property of spaghetti related to its mechanical
fracture. Take both ends of a spaghetto and bend it
into an arch, gradually increasing its curvature. One can
suppose that sooner or later it will break into two parts
somewhere near the middle. It turns out, though, that
in this case our intuition is not correct: nearly always it
will break into three or more pieces.

Such unusual behavior of a spaghetti strand attracted
the attention of numerous scientists, Richard Feynman
among them. But only a short time ago in 2005, ow-
ing to the research studies conducted by the two French

physicists Audoly and Neukirch, was a quantitative de-
scription of this phenomenon obtained.
The scientists studied the behavior of a thin, elastic

rod under the effect of flexural deformation. They wrote
the differential equation which describes the distribution
of the tension (so-called Kirchhoff equation) in a curved
elastic rod, first with both ends fixed. Then they stud-
ied what will happen to the tension distribution along
the rod after the instantaneous release of one of its ends.
Only a numeric solution was obtained, but it provided
an understanding of the essence of the process. Qualita-
tively, the explanation is as follows.
Let us suppose that due to the applied mechanical

stress, the first fracture occurs at some (weakest) point
of the strand. It would seem that after being broken,
both parts of the rod should return to their equilibrium
positions.

FIG. 5. Instant photo of spaghetti’s fracture.

This is true, however the transition to the equilibrium
state occurs in a very nontrivial way. The first fracture
generates flexural waves in both fragments of the rod
which start to propagate along each of the fragments.
Evidently, flexural waves of this kind (generated by the
first fracture) will dampen out with time, but, at certain
ratios between the rod length and its elastic modulus,
the wave propagation can lead to a subsequent rod frag-
mentation. Indeed, propagation of such a wave means
periodic growth and decrease of the local flexural stress
along the rod. It is important to note that these flex-
ural waves propagate on the background of the already
existing initial homogeneous bend of the rods, which re-
laxes much more slowly than the flexural wave period.
As a result of the summation of these two quasistatic
and dynamic stresses, further rod fractures may occur
at other points, where such sums exceed a critical value.
It is also noteworthy that after intricate computations,
the researchers confirmed their theoretical conclusions by
filming the experimental spaghetti break studies with a
high-speed camcorder (Figure 5).
Very recently, Ronald Heisser and Vishal Patil, two

students of the Massachusett Institute of Technology
(USA), working on a scientific project proposed to them
by their tutor Jörn Dunkel, managed to overcome the
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magic reluctance of the spaghetto to break into two parts.
For this, as it turned out, it is enough to twist spaghetto,
say 360 degrees, along its axis. In this case, after the
first break, only part of its released energy is spent on
the flexural wave excitation, the rest into spinning the

spaghetto (excitation of the “twisting wave”). As a re-
sult, the amount of released energy is no longer sufficient
for the second break. . .
While the spaghetti is cooking, you can entertain your-

self with several remaining dry spaghetti by experimen-
tally verifying the findings of Audoly and Neukirch.

[1] The author is grateful to A.Y. Grosberg for introduction
to the theory of knots.


