

RESEARCH AREA 1 - Superconductors and Innovative materials for Energy and Environment - 2023

Superconductivity induced by gate-driven hydrogen intercalation in the charge-density-wave compound 1T-TiSe2

E. Piatti¹, G. Prando², M. Meinero^{3,4}, C. Tresca^{5,6}, M. Putti^{3,4}, S. Roddaro⁷, <u>G. Lamura^{3*}</u>,

T. Shiroka^{8,9}, P. Carretta², G. Profeta^{5,6}, D. Daghero¹, and R. S. Gonnelli¹

¹Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy ²Department of Physics, Università di Pavia, I-27100 Pavia, Italy ³CNR-SPIN, Corso Perrone 24, 16152 Genova, Italy

⁴ Department of Physics, Università di Genova, via Dodecaneso 33, 16146 Genova, Italy

⁵Department of Physical and Chemical Sciences, Università dell'Aquila, I-67100 L'Aquila, Italy

⁶CNR-SPIN, Università degli Studi dell'Aquila, I-67100 L'Aquila, Italy

⁷Istituto Nanoscienze-CNR, NEST and Scuola Normale Superiore, I-56127 Pisa, Italy ⁸Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

⁹Laboratorium für Festkörperphysik, ETH-Hönggerberg, 8093 Zürich, Switzerland

Commun Phys 6, 202 (2023). https://doi.org/10.1038/s42005-023-01330-w

The search for a roadmap towards high-temperature superconductivity is one of the hot topics of modern material science. During the last decade, conventional BCS superconductivity at 203 K and 250 K was shown to occur in H_2S [1] and YH_{10} [2] at very high pressures (~200 GPa). These ground-breaking experiments proved that in BCS-conventional superconductors Tc is not upperbounded, provided the proper mixture of high density of states and high phonon frequencies is available. At the same time, such experiments proposed hydrogen as a highly effective way to tune the phononic spectra and, thus, for inducing superconductivity with a high critical temperature.

This work presents the effects of hydrogen intercalation in 1T-TiSe₂ via the ionic-liquid gating method. The H-intercalated compound, namely H_xTiSe₂, becomes a superconductor at about 3.6 K and, interestingly, and its intrinsic charge-density-wave state coexists with superconductivity. The H-induced superconducting phase is possibly gapless-like and multi-band in nature, in contrast with those induced in TiSe₂ via copper, lithium, and electrostatic doping. This unique behavior is supported by ab initio calculations showing that high concentrations of H dopants induce a full reconstruction of the band structure, although with little coupling between electrons and high-frequency H phonons. Such findings provide a promising approach for engineering the ground state of transition metal dichalcogenides and other layered materials via gate-controlled protonation.

References

A. P. Drozdov, et al, Conventional superconductivity at 203 kelvin at high pressures in the sulphur hydride system. Nature 525, 73 (2015).
A. P. Drozdov, et al, Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531

Figure a Sketch of a TiSe₂ crystal immersed in the electrochemical cell for ionic liquid gating-induced protonation, including the electrical connections. The side panel shows a ball-and-stick model of the H_x -TiSe₂ structure with $x \leq 1$. **b** Temperature dependence of the electrical resistivity $\rho(T)$ normalized by the value at 300 K of a series of TiSe₂ crystals gated for increasing amounts of time. The inset shows a magnification of the T range where the superconducting transitions are observed. **c** The Brillouin zone with high symmetry points and the electronic band structure and the density of states of 1T-H₁TiSe₂ (red) compared with the pristine 1T-TiSe₂ dispersion (gray).

