Highlights

RESEARCH AREA 3 - Quantum Science and technologies - 2024

"Single photon detection in NbRe superconducting microstrips"

Mikkel Ejrnaes¹, Carla Cirillo², Daniela Salvoni³, Federico Chianaese⁴, Ciro Bruscino⁴, Pasquale Ercolano⁴, Antonio Cassinese^{4,5}, Carmine Attanasio⁶, Giovanni Piero Pepe⁴ & Loredana Parlato⁴

¹CNR – SPIN Pozzuoli, Via Campi Flegrei n.34, 80078 Pozzuoli, Napoli, Italy
²CNR – SPIN Salerno, Via Giovanni Paolo II n.132, 84084 Fisciano, Salerno, Italy
³Photon Technology Italy Srl, Via Giacinto Gigante n.174, 80128 Napoli, Italy
⁴Dipartimento di Fisica "E. Pancini", Università degli Studi di Napoli Federico II, Via Cinthia, 80125 Napoli, Italy
⁵Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, P.le Tecchio n.80, 80125 Napoli, Italy
⁶Dipartimento di Fisica "E.R. Caianiello", Università Di Salerno, Via Giovanni Paolo II n.132, 84084 Fisciano, Salerno, Italy

APPLIED PHYSICS LETTERS 121 (2022) 262601

Detection of single infrared photons in superconducting microstrips of 4 nm thick disordered Nb_{0.15}Re_{0.85} has been investigated. Microstrips with a critical temperature of 5.15 K and widths from 1.0 to 2.5 μ m have been fabricated by optical lithography. We demonstrate single photon detection sensitivity at 1.5 μ m wavelength at a temperature of 1.79 K. By investigating the detection process at this temperature, we find that the current bias threshold is at 21% of the depairing current. This threshold is similar to what should be observed in typical amorphous superconductors, which confirms that ultrathin disordered Nb_{0.15}Re_{0.85} is an interesting material for superconducting microstrip single photon detectors that operate above 1 K.

This research was supported by the QUANCOM Project (MUR PON Ricerca e Innovazione No. 2014–2020 ARS01_00734).

Fig. 1: Current–voltage characteristic at 1.79 K for a typical device. Inset: image of the same microstrip as realized by optical microscope.

Fig. 2: Single photon detection in NbRe microstrip at 1.79 K. (a) Dark count rates (black squares) and photon count rates (magenta circles) at 1.5 μ m. (b) The photon count rate as a function of the light attenuation at a bias current of 69.1 μ A (black circles). The best single photon response fit (thick red line) and the best two-photon response (thin blue line) are also shown that affirms the single photon response of the NbRe microstrip.

