

RESEARCH AREA 3 - Quantum Science and technologies - 2022

"Orbital selective switching of ferromagnetism in an oxide quasi two-dimensional electron gas"

R. Di Capua^{1,2}, M. Verma³, M. Radovic⁴, V. N. Strocov⁴, C. Piamonteze⁴, E. B. Guedes⁴, N. C. Plumb⁴, Y. Chen², M. D'Antuono^{1,2}, G. M. De Luca^{1,2}, E. Di Gennaro^{1,2}, D. Stornaiuolo^{1,2}, D. Preziosi⁵, B. Jouault⁶, F. Miletto Granozio², A. Sambri², R. Pentcheva³, G. Ghiringhelli^{7,8} & M. Salluzzo²

¹Dipartimento di Fisica "E. Pancini", Università di Napoli "Federico II", Complesso Monte Sant'Angelo via Cinthia, I-80126 Napoli, Italy. ²CNR-SPIN, Complesso Monte Sant'Angelo via Cinthia, I-80126 Napoli, Italy.

³Department of Physics and Center for Nanointegration, University Duisburg-Essen Lotharstr. 1, D-47057 Duisburg, Germany.

⁴Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

⁵Université de Strasbourg, CNRS, IPCMS UMR 7504, 67034 Strasbourg, France.

⁶Laboratoire Charles Coulomb, UMR 5221, CNRS, Université de Montpellier, F-34095 Montpellier, France.

⁷Dipartimento di Fisica Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.

⁸CNR- SPIN, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.

npj Quantum Materials 7 (2022) 41

Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers intriguing phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching of the spin-polarization in the oxide q2DEG formed at the (001) interface between the LaAlO₃, EuTiO₃ and SrTiO₃ band insulators. By using density functional theory calculations, transport, magnetic and x-ray spectroscopy measurements, we find that the filling of titanium-bands with $3d_{xz}/3d_{yz}$ orbital character in the EuTiO₃ layer and at the interface with SrTiO₃ induces an antiferromagnetic to ferromagnetic switching of the exchange interaction between Eu-4f⁷ magnetic moments. The results explain the observation of the carrier density-dependent ferromagnetic correlations and anomalous Hall effect in this q2DEG, and demonstrate how combined theoretical and experimental approaches can lead to a deeper understanding of emerging electronic phases and serve as a guide for the materials design of advanced electronic applications.

This work has been supported by ERA-NET QUANTERA European Union's Horizon H2020 project QUANTOX under Grant Agreement No. 731473, Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) for the PRIN project TOP-SPIN (Grant No. PRIN 20177SL7HC) and for the PRIN 2010-11 project (Grant No. PRIN 2010-11–OXIDE), the EU COST program CA16218 (Nanocohybri), the German Research Foundation (DFG) within CRC/TRR80 (project number 107745057, subproject C3), CRC1242 (project number 278162697, subproject C02), and Computation time at the Leibniz Rechenzentrum Garching, project pr87ro and supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1 FUGG).

Fig. 1: (a) Sketch of the LAO/ETO/STO heterostructure. (b) Sheet resistance vs. temperature as a function of the gate voltage Vg. The arrow indicates increasing values of Vg from -30 to 30 V and 2D carrier density. (C) Eu- XMCD (scatter data) and SQUID magnetization (continuous lines) as function of the magnetic field parallel (red) and perpendicular (black) to the interface. The data are normalized to the saturation value.

