Highlights

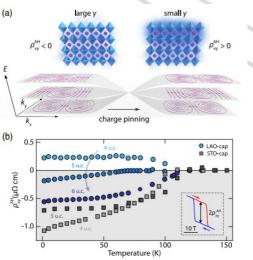
Activity C - Innovative materials with strong interplay of spin, orbital, charge and topological degrees of freedom - 2021


Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces

T. C. van Thiel, ¹ W. Brzezicki, ^{2,3} C. Autieri, ² J. R. Hortensius, ¹ D. Afanasiev, ¹ N. Gauquelin, ⁴ D. Jannis, ⁴ N. Janssen, ¹ D. J. Groenendijk, ¹ J. Fatermans, ^{4,5} S. Van Aert, ⁴ J. Verbeeck, ⁴ M. Cuoco, ^{6,7} and A. D. Caviglia¹

¹Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
²International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
³Institute of Theoretical Physics, Jagiellonian University, ulica S. Łojasiewicza 11, PL-30348 Kraków, Poland
⁴Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
⁵Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
⁶CNR-SPIN, UOS Salerno c/o Università di Salerno - Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
⁷Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, IT-84084 Fisciano (SA), Italy

PHYSICAL REVIEW LETTERS 127 (2021) 127202


In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO₃, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO₃, a polar wide band gap insulator (Figure 1). We demonstrate control of the momentum space topological properties of ultrathin SRO by creating a charge-frustrated interface. Through magneto-optical characterization, theoretical calculations and transport measurements we show that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO₃ (Figure 2). Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.

Sr •Ti •O •Ru •La •Al

Fig. 1: Atomic characterization. Highangle annular dark-field images of (a) STO/SRO/STO and (b) STO/SRO/LAO heterostructres.

Fig. 2: Anomalous Hall effect. . (a) Illustration representing the evolution of the momentum-space topological charges. Upon increasing the charge pinning, the system moves through a Weyl point in the synthetic space spanned by k_x , k_y and the charge pinning parameter γ . (b) The measured anomalous Hall resistivity resistivity for SRO films of varying thickness.

