Highlights

ACTIVITY B <u>Superconducting and correlated low dimensional materials and devices for quantum electronics</u> and <u>spintronicst</u> - 2020

A Perspective on Conventional High-Temperature Superconductors at High Pressure: Methods and Materials

J. A. Flores-Livas¹, L. Boeri¹, A. Sanna², G. Profeta³, R. Arita^{4,5}, M. Eremets⁶

¹Department of Physics, Sapienza Universita' di Roma, Italy
²Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
³Department of Physical and Chemical Sciences and SPIN-CNR, University of L'Aquila, Via Vetoio 10, I-67100 L'Aquila, Italy
⁴Department of Applied Physics, Hongo Bunkyo-ku 113-8656, Japan
⁵RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, 351-0198, Japan
⁶Max-Planck Institute for Chemistry, Hahn-Meitner-Weg 1 55128 Mainz, Germany

PHYSICS REPORTS 856, 1-78 (2020)

An international collaboration involving researchers from Italy, Germany and Japan has published one of the most complete reviews on the field of high-temperature superconductivity at high pressures.

The field of superconductivity has been galvanized by reports of critical temperatures of 203 K (2015) and 260 K (2019) in two hydrogen-based materials. These two reports have broken the previous records held by the cuprates, providing the first glimpse to the solution of the hundred-year-old problem of room-temperature superconductivity.

In the Review, published open access on Physics Reports, explain the mechanism underlying superconductivity in these exceptional compounds and provide a complete reference of the recent advances in experimental techniques, superconductivity theory and first-principles computational methods which have made these discoveries possible. Besides, in an attempt to evidence empirical rules governing superconductivity in hydrides under pressure, the authors also discuss general trends in the electronic structure and chemical bonding, possible strategies to optimize pressure and transition temperatures in conventional superconducting materials as well as future directions in theoretical, computational and experimental research.

In the words of the Referees, this work has been classified as "one of the most complete, and up-to-date Review on the superconductivity of Hydrides, that will definitely serve as a reference for future works."

	11-
	He
Li Be Hydrogen content B C N O	F Ne
82 44 1 2 3 4 5 6 8 10 12 14 21	
Na Mg Al Si P S	Cl Ar
30 140 ~20 90 200	
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se	Br Kr
148 235 233 54 72 30 90 180 90 120	12
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te	I Xe
259 240 88 47 11 1.3 34 90 95 100	30 29
Cs Ba Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po	At Rn
30 76 136 60 21 107 110 50	
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv	Ts Og
63 116	
	Vh Lu
Lanthanides 250 117 31 6 10 50 10 59 10 59 10 21	
Actinides 250 170 62 35 10 0 03 09 K CT ES FM Md	

