Highlights

Activity C - Innovative materials with strong interplay of spin, orbital, charge and topological degrees of freedom - 2021

Unveiling unconventional magnetism at the surface of Sr₂RuO₄

R. Fittipaldi^{1,2}, R. Hartmann³, M. T. Mercaldo², S. Komori⁴, A. Bjørlig⁵, W. Kyung⁶, Y. Yasui⁷, T. Miyoshi⁷, L. A. B. Olde Olthof⁴, C. M. Palomares Garcia⁴, V. Granata², I. Keren⁸, W. Higemoto⁹, A. Suter⁸, T. Prokscha⁸, A. Romano^{1,2}, C. Noce^{1,2}, C. Kim⁶, Y. Maeno⁷, E. Scheer³, B. Kalisky⁵, J. W. A. Robinson⁴, M. Cuoco^{1,2}, Z. Salman⁸, A. Vecchione^{1,2}, A. Di Bernardo³
¹CNR-SPIN, UOS Salerno c/o Università di Salerno - Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
²Dipartimento di Fisica "E. R. Caianiello" Universitá di Salerno, Fisciano, Salerno I-84084, Italy
³Department of Physics, University of Konstanz, 78457 Konstanz, Germany
⁴Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
⁵Department of Physics, Bar Ilan University, Ramat Gan 5920002, Israel
⁶Department of Physics, Kyoto University, Kyoto 606-8502, Japan
⁸Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, PSI, Switzerland
⁹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

NATURE COMMUNICATIONS 12 (2021) 5792

Materials with strongly correlated electrons often exhibit interesting physical properties. An example of these materials is the layered oxide perovskite Sr₂RuO₄, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in Sr₂RuO₄ is still ongoing, a deeper understanding of the Sr₂RuO₄ normal state appears crucial as this is the background in which electron pairing occurs. By using low-energy muon spin spectroscopy we discover the existence of surface magnetism in Sr₂RuO₄ in its normal state. We detect static weak dipolar fields yet manifesting at an onset temperature higher than 50 K. We ascribe this unconventional magnetism to orbital loop currents forming at the reconstructed Sr₂RuO₄ surface. Our observations set a reference for the discovery of the same magnetic phase in other materials and unveil an electronic ordering mechanism that can influence electron pairing with broken time reversal symmetry.

Fig. 1: Temperature dependence of magnetism in Sr₂RuO₄ at different implantation depths. Shift in the muon depolarization rate, $\Delta \lambda$, from the λ value measured at T = 270 K as a function of temperature T measured in a transverse field setup (inset) with applied field amplitude B_{ext}=100G at different implantation energy E values: E=3 keV, E=6 keV and E =16 keV.

Fig. 2: Magnetism due to orbital loop currents in Sr_2RuO_4 . Illustration of the RuO_4 plaquette and of the corresponding dorbitals for the Ru atoms and p-orbitals for the O atoms (with asymmetric loop current distributions generating magnetic flux pointing inward (yellow triangle) or outward (grey triangle) the RuO₄ plane. Possible orbital loop currents for a given RuO₄ plaquette associated with the Ru–O hybridization of the d_{xy} orbitals and of the (d_{xz}, d_{yz}) orbitals.

