Highlights

Innovative materials with strong interplay of spin orbital charge and topological degrees of freedom - 2019

Anomalous and Polarization-Sensitive Photoresponse of T_d-WTe₂ from Visible to Infrared Light Wei Zhou¹, Jingzhe Chen², Heng Gao², Tao Hu², Shuangchen Ruan¹, Alessandro Stroppa³, Wei Ren²

¹ Shenzhen Key Laboratory of Laser Engineering College of Optoelectronic Engineering Shenzhen University Shenzhen 518060, China ²Department of Physics Materials Genome Institute International Centre for Quantum and Molecular Structures ³CNR-SPIN c/o Università degli Studi dell'Aquila, Dipartimento Scienze Fisiche e Chimiche, Via Vetoio, 67100, Coppito (AQ), Italy

ADVANCED MATERIALS 31 (2019) 1804629

Recently, an emergent layered material T_d -WTe₂ was explored for its novel electron-hole overlapping band structure and anisotropic inplane crystal structure. Here, the photoresponse of mechanically exfoliated WTe₂ flakes is investigated. A large anomalous current decrease for visible (514.5 nm), and mid- and far-infrared (3.8 and 10.6 μ m) laser irradiation is observed, which can be attributed to light-induced surface bandgap opening from first-principles calculations. The photocurrent and responsivity can be as large as 40 μ A and 250 A W⁻¹ for a 3.8 μ m laser at 77 K. Furthermore, the WTe₂ anomalous photocurrent matches its

in-plane crystal structure and exhibits light polarization dependence, maximal for linear laser polarization along the W atom chain a direction and minimal for the perpendicular b direction, with the anisotropic ratio of 4.9. Consistently, first-principles calculations confirm the angle-dependent bandgap opening of WTe₂ under polarized light irradiation. The anomalous and polarization-sensitive photoresponses suggest that linearly polarized light can significantly tune the WTe₂ surface electronic structure, providing a potential

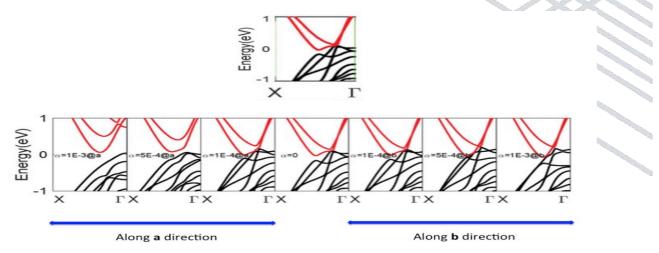


Fig. 1: The bulk WTe₂ electronic structure without laser irradiation (top panel). WTe₂ electronic structure along X– Γ directions for different values of parameter α when the 700 nm linear polarization direction of the light is along the **a** or **b** directions - α is a parameter related to the input laser power, its physical meaning is the approach number of excitons mixed in the electrons of a unit cell (bottom panel).

