Highlights

Innovative materials with strong interplay of spin orbital charge and topological degrees of freedom - 2019

Nodal superconducting exchange coupling

A. Di Bernardo¹, S. Komori¹, G. Livanas², G. Divitini¹, P. Gentile², M. Cuoco², J.W.A. Robinson¹

¹ Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom ²CNR-SPIN c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy

Nature Materials 18 (2019) 1194

The superconducting equivalent of giant magnetoresistance involves placing a thin-film superconductor between two ferromagnetic layers. A change of magnetization-alignment in such a superconducting spin-valve from parallel (P) to antiparallel (AP) creates a positive shift in the superconducting transition temperature (ΔT_c) due to an interplay of the magnetic exchange energy and the superconducting condensate. The magnitude of ΔT_c scales inversely with the superconductor thickness (d_s) and is zero when d_s exceeds the superconducting coherence length (ξ) as predicted by de Gennes. Here we report a superconducting spin-valve effect involving a different underlying mechanism (Fig. 1) that goes beyond de Gennes in which magnetization-alignment and ΔT_c are determined by the nodal quasiparticle-excitation states on the Fermi surface of the d-wave superconductor YBa₂Cu₃O_{7- δ} (YBCO) grown between insulating layers of ferromagnetic Pr_{0.8}Ca_{0.2}MnO₃. We observe ΔT_c values

that approach 2 K with ΔT_c oscillating with d_s over a length scale exceeding 100 ξ and, for particular values of d_s , we find that the superconducting state reinforces an antiparallel magnetization-alignment. These results pave the way for all-oxide superconducting memory in which superconductivity modulates the magnetic state.

Fig. 1: Sketch illustrating the energy splitting of low-energy quasiparticle excitations in d-wave superconductor due to the exchange coupling at the superconductor/ferromagnet interfaces (YBCO/FI).

Fig. 2: (a)-(f) R(T) curves showing ΔH_c through the superconducting transition for trilayers with different values of d_s (labelled). (g) maximum values of $\Delta T_c = T_c$ (P) - T_c (AP) versus d_s with the inset showing R(T) curves in the P and AP states for $d_s = 9$ u.c. (h), a sketch illustrating the energy splitting of low-energy quasiparticle excitations in YBCO due to E_{ex} at the YBCO/FI interfaces. (i,) calculated Fermi surface of YBCO between two FIs with relative magnetization angle θ . Insets show free energy curves at points in k-space versus θ . (j) Minima in free energy for P (top) and AP (bottom) states versus d_s for different values of E_{ex} (given in units of the intra-u.c. charge hopping parameter). The sketches in g and j show the ground state (P or AP) of the trilayer.

