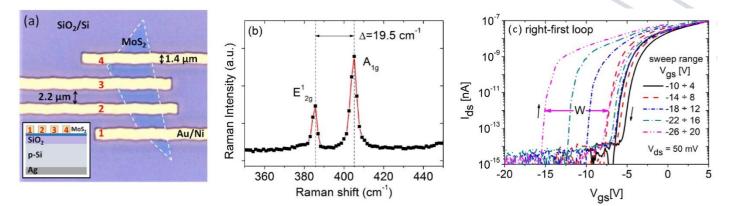
Highlights

Superconducting and correlated low dimensional materials and devices for quantum electronics and spintronic - 2018

Hysteresis in the transfer characteristics of MoS₂ transistors


Antonio Di Bartolomeo^{1,2}, Luca Genovese¹, Filippo Giubileo², Laura lemmo¹, Giuseppe Luongo^{1,2}, Tobias Foller³ and Marika Schleberger³

¹ Physics Department, University of Salerno, 84084 Fisciano, Salerno, Italy
² CNR-SPIN, c/o Università di Salerno- Via Giovanni Paolo II, 132 - 84084 - Fisciano (SA), Italy
³ Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, D-47057, Duisburg, Germany

2D MATERIALS 5 (2018) 015014

Molybdenum disulfide (MoS₂) has recently become one of the most popular semiconductors from the family of the transition metal dichalcogenides. The MoS₂ bandgap can be controlled by the number of layers: Bulk MoS₂ has an indirect bandgap of 1.2 eV while monolayer MoS₂ has a direct bandgap of 1.8 eV. The large bandgap, combined with mechanical flexibility, makes MoS₂ suitable as channel in field effect transistors (FETs) for logic applications.

We investigate the origin of the hysteresis observed in the transfer characteristics of back-gated field effect transistors with an exfoliated MoS₂ channel. We find that the hysteresis is strongly enhanced by increasing either gate voltage, pressure, temperature or light intensity. Our measurements reveal a step-like behavior of the hysteresis around room temperature, which we explain as water-facilitated charge trapping at the MoS₂/SiO₂ interface. We conclude that intrinsic defects in MoS₂, such as S vacancies, which result in effective positive charge trapping, play an important role, besides H₂O and O₂ adsorbates on the unpassivated device surface. We show that the bistability associated to the hysteresis can be exploited in memory devices.

Figure 1. (a) Optical image of a monolayer MoS_2 flake (highlighted by dashed white lines) contacted with Ni/Au leads; the inset shows the schematic cross-section of the back-gated FET. (b) Raman spectrum of the MoS_2 flake. (c) Transfer characteristics of the MoS_2 transistor for the back-gate voltage, Vgs , in loops of different amplitudes but with fixed steps (Vgs = 0.1 V).

