Highlights

Advanced materials and techniques for organic electronics, biomedical and sensing applications - 2018

Phase-matching-free parametric oscillators based on two dimensional semiconductors

Alessandro Ciattoni¹, Andrea Marini^{2,3}, Carlo Rizza^{1,4}, Claudio Conti^{3,5}

¹CNR-SPIN c/o Dip.to di Scienze Fisiche e Chimiche - Via Vetoio - 67010 - Coppito (AQ), Italy

²ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain ³Institute for Complex Systems (ISC-CNR), Via dei Taurini 19, 00185, Rome, Italy

⁴Department of Industrial and Information Engineering and Economics, Via G. Gronchi 18, University of L'Aquila, I-67100 L'Aquila, Italy ⁵Department of Physics, University Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy

LIGHT: SCIENCE & APPLICATIONS 7 (2018) 5

Optical parametric oscillators are widely used as pulsed and continuous-wave tunable sources for innumerable applications, such as quantum technologies, imaging and biophysics. A key drawback is material dispersion, which imposes a phase-matching condition that generally entails a complex design and setup, thus hindering tunability and miniaturization.

We have obtained the new and unexpected result that micro-resonators embedding monolayer transition metal dichalcogenides (ML-TMD) produce doubly resonant parametric oscillations with unprecedentedly small cavities of few microns thanks to the strong nonlinearity of these materials and their atom-sized thickness, which circumvent the ubiquitous phase-matching condition of state-of-the-art quadratic nonlinear optics. Bearing in mind that nonlinear optics ignited in 1961 with the discovery of second-harmonic generation (a parametric effect ruled by phase-matching) by Peter Franken et al. at University of Michigan, we envisage that the extent, importance and impact of our findings can be enormous since they dismiss a paradigm standing ever since fifty years. In addition, electrical voltage gating of two-dimensional material provides our setup with a further external control parameter that can be used to modulate the parametric radiation emission.

Fig. 1 a. Schematic illustration for conventional three-wave parametric coupling in bulk nonlinear crystals. The effective quadratic susceptibility $\chi^{(2)}_{eff}$ is heavily affected by the mismatch Δk among the wavevectors $k_m = n_m \omega_m / c$ of the pump (3), signal (1) and idler (2) waves, whose destructive interference $\Delta k \neq 0$ hinders parametric coupling. **b.** Sketch of the ML-TMD based parametric oscillator. The cavity is assembled using two Bragg mirrors separated by a dielectric layer, and the ML-TMD is placed onto the left mirror. The incident (i) pump field produces both reflected (r) and transmitted (t) pump, signal and idler fields by means of the ML-TMD quadratic surface conductivity $\sigma_{nm} \neq 0$. The mutual dephasing $\Delta \phi = \Delta k I$ among these three waves becomes negligible within the atomic thickness of the nonlinear ML-TMD ($\Delta \phi \approx 10^{-2}$) because $I = \lambda$, thus enabling phase-matching-free (*i.e.*, free from the momentum conservation requirement ($\Delta k = 0$) parametric coupling. c. Sketch of the geometry of MX₂ ML-TMDs. Fast modulation is enabled by extrinsic doping by a gate voltage, with gold contacts applied between the ML-TMD and the Bragg mirror.

