Highlights

Oxides -2017

## Hallmarks of Hunds coupling in the Mott insulator Ca<sub>2</sub>RuO<sub>4</sub>

D. Sutter<sup>1</sup>, C.G. Fatuzzo<sup>2</sup>, S. Moser<sup>3</sup>, M. Kim<sup>4,5</sup>, R. Fittipaldi<sup>6,7</sup>, A. Vecchione<sup>6,7</sup>, V. Granata<sup>6,7</sup>, Y. Sassa<sup>8</sup>, F. Cossalter<sup>1</sup>, G. Gatti<sup>2</sup>, M. Grioni<sup>2</sup>, H.M. Rønnow<sup>2</sup>, N.C. Plumb<sup>9</sup>, C.E. Matt<sup>9</sup>, M. Shi<sup>9</sup>, M. Hoesch<sup>10</sup>, T.K. Kim<sup>10</sup>, T.-R. Chang<sup>11,12</sup>, H.-T. Jeng<sup>11,13</sup>, C. Jozwiak<sup>3</sup>, A. Bostwick<sup>3</sup>, E. Rotenberg<sup>3</sup>, A. Georges<sup>4,5,14</sup>, T. Neupert<sup>1</sup> & J. Chang<sup>1</sup>

<sup>1</sup>Physik-Institut, Universitat Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
<sup>2</sup>Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
<sup>3</sup>Advanced Light Source (ALS), Berkeley, California 94720, USA
<sup>4</sup>College de France, Paris Cedex 05 75231, France
<sup>5</sup>Centre de Physique Theorique, Ecole Polytechnique, CNRS, Univ Paris-Saclay, Palaiseau 91128, France
<sup>6</sup>CNR-SPIN, Fisciano, Salerno I-84084, Italy
<sup>7</sup>Dipartimento di Fisica 'E.R. Caianiello', Università di Salerno, Fisciano, Salerno I-84084, Italy
<sup>8</sup>Department of Physics and Astronomy, Uppsala University, Uppsala S-75121, Sweden
<sup>9</sup>Swiss Light Source, Paul Scherrer Institut, Villigen PSI CH-5232, Switzerland
<sup>10</sup>Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
<sup>11</sup>Department of Physics, National Tsing Hua University, Tainan 701, Taiwan
<sup>12</sup>Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
<sup>14</sup>Department of Quantum Matter Physics, University of Geneva, Geneva 4 1211, Switzerland

## NATURE COMMUNICATIONS 8, 15176 (2017)

A paradigmatic case of multi-band Mott physics including spin-orbit and Hund's coupling is realized in Ca<sub>2</sub>RuO<sub>4</sub>. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy electronic structure. We provide, using angle-resolved photoemission electron spectroscopy, the band structure of the paramagnetic insulating phase of Ca<sub>2</sub>RuO<sub>4</sub> and show how it features several distinct energy scales. Comparison to a simple analysis of atomic multiplets provides a quantitative estimate of the Hund's coupling J=0.4 eV. The experimental spectra are in agreement with electronic structure calculations performed with Dynamical Mean-Field Theory. The crystal field stabilization of the d<sub>xy</sub> orbital due to c-axis contraction is shown to be essential to explain the insulating phase. These results underscore the importance of multi-band physics, Coulomb interaction and Hund's coupling that together generate the Mott insulating state of Ca<sub>2</sub>RuO<sub>4</sub>.





Fig.1: ARPES spectra recorded along high-symmetry directions with 65 eV circularly polarized light.

Fig.2: DMFT calculation of the spectral function, with Coulomb interaction U=2.3 eV and a Hund's coupling J=0.4 eV. Dark colours correspond to high intensities.



