Highlights

Superconductivity - 2016

Research Update: Structural and transport properties of (Ca,La)FeAs2 single crystal

F. Caglieris¹, A. Sala^{1,2,3}, M. Fujioka^{4,5}, F. Hummel⁶, I. Pallecchi¹, G. Lamura¹, D. Johrendt⁶, Y. Takano⁴, S. Ishida³, A. Iyo³, H. Eisaki³ H. Ogino², H. Yakita², J. Shimoyama^{2,7} and M. Putti¹

¹CNR-SPIN and Università di Genova, via Dodecaneso 33, I-16146 Genova, Italy
²Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
³National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
⁴National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
⁵Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
⁶ Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstr. 5-13, 81377 München (Germany)
⁷Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, C, Japan

APL Materials 4, 020702 (2016)

Structural and transport properties in the normal and superconducting state are investigated in a $Ca_{0.8}La_{0.2}FeAs_2$ single crystal with $T_c=27$ K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J_c for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as $J_c(B=0)=10^5$ A/cm². This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresitivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.

Left: Resistivity vs *T* measurement of a Ca_{0.8}La_{0.2}FeAs₂ single crystal. Inset: IB image of the FIB patterned crystal. **Center** : Resistivity transition for magnetic fields B=0 and B=7T, applied both parallel (B||c) and perpendicular (B \perp c) to the *c*-axis. Inset: B_{c2} vs T_c up to B_{c2} =7T for B||c and B \perp c. *Right:* Transport J_c measurements at fixed temperatures as a function of B||c and B \perp c. Inset: V-I curves measured at T=3K at different perpendicular (B^c) fields

