Highlights

Other Materials - 2016

Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media

A. Ciattoni¹, C. Rizza^{1,2}, A. Marini³, A. Di Falco⁴, D. Faccio⁵ and M. Scalora⁶

¹Consiglio Nazionale delle Ricerche, CNR-SPIN, L'Aquila, Italy

²Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como, Italy
³ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, (Barcelona), Spain
⁴SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, United Kingdom
⁵School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
⁶Charles M. Bowden Research Center RDMR-WDS-WO, RDECOM, Redstone Arsenal, Alabama 35898-5000, USA

LASER & PHOTONICS REVIEW 10, 517 (2016)

In recent years, unconventional metamaterial properties have triggered a revolution of electromagnetic research which has unveiled novel scenarios of wave-matter interaction. A very small dielectric permittivity is a leading example of such unusual features, since it produces an exotic static-like regime where the electromagnetic field is spatially slowly-varying over a physically large region. The so-called epsilon-near-zero (ENZ) metamaterials thus offer an ideal platform where to manipulate the inner details of the "stretched" field. Here we theoretically prove that a standard nonlinearity is able to operate such a manipulation to the point that even a thin slab produces a dramatic nonlinear pulse transformation, if the dielectric permittivity is very small within the field bandwidth. The predicted non-resonant releasing of full nonlinear coupling produced by the epsilon-near-zero condition does not resort to any field enhancement mechanism and opens novel routes to exploiting matter nonlinearity for steering the radiation by means of ultra-compact structures.

Figure 1. In the linear regime the slab has a dielectric permittivity $\epsilon(\omega)$ with a standard Lorentz profile located at the resonant frequency ω_e and with a zero-crossing-point of its real part at ω_0 . Dispersion parameters have been chosen in such a way that the imaginary part of the permittivity is low around zero-crossing-point so that $|\epsilon(\omega)|$ is much smaller than one in a spectral bandwidth around ω_0 and the slab can support the ENZ regime.

Figure 2. Mechanism supporting the full potential of the nonlinear wave-matter interaction in the ENZ regime. Spatial profiles of the dimensionless electric e_x and polarization p_x fields at the normalized time T = 753 of two pulses propagating within the slab of thickness L with normalized amplitude $e_0 = 0.4$ and central frequencies $1.6\omega_0$ (outside of the ENZ regime) ω_0 (in the ENZ regime). In the first case the electric field e_x is "large" only at the regions around the polarization p_x to increase and to trigger the nonlinear wave-matter coupling. In the second case, in a physically large volume, the spatially slowly varying character of e_x yields the onset of the nonlinear regime.

