Highlights

Fundamental Properties - 2016

Spin Pumping and Measurement of Spin Currents in Optical Superlattices

C. Schweizer §, M. Lohse §, R. Citro *, and I. Bloch §

[§] Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, D-80799 München, Germany & Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany *CNR-SPIN Institute for Superconductors, Innovative Materials and Devices, RuoS Salerno, Italy Department of Physics, «E.R. Caianiello», University of Salerno, Fisciano (Sa), Italy

PHYSICAL REVIEW LETTERS 117, 170405 (2016)

We report on the experimental implementation of a spin pump with ultracold bosonic atoms in an optical superlattice. In the limit of isolated double wells, it represents a 1D dynamical version of the quantum spin Hall effect. Starting from an antiferromagnetically ordered spin chain, we periodically vary the underlying spin-dependent Hamiltonian and observe a spin current without charge transport. We demonstrate a novel detection method to measure spin currents in optical lattices via superexchange oscillations emerging after a projection onto static double wells.

Figure 1. Spin pump cycle. (a) Spin pump cycle (green) in parameter space of spindependent tilt Δ and exchange coupling dimerization δJ_{ex} . The path can be parametrized by the angle ϕ , the pump parameter. Between $\phi=0$ and π , \uparrow and \downarrow spins exchange their position, which can be observed by site-resolved band mapping images detecting the spin occupation on the left (L) and right (R) sites, respectively.

(b) Evolution of the two particle ground state in a double well around Δ =0 with tunnel coupling 1/2(J+ δ J), on-site interaction energy U, and spin dependent tilt Δ , as well as the exchange coupling J_{ex} 1/2(J+ δ J)²/U and the lattice constant d_s.

