Highlights

Fundamental properties - 2016

Waveguide Characterisation of S-Band Micowave Mantle Cloaks for Dielectric and Conducting Objects

A. Vitiello ${ }^{1,4}$, M. Moccia ${ }^{2}$, G.P. Papari ${ }^{1,4}$, G. D’Alterio ${ }^{3}$, R. Vitiello ${ }^{3}$, V. Galdi ${ }^{2}$ and A. Andreone ${ }^{1,4}$
${ }^{1}$ CNR-SPIN Institute for Superconductors, Innovative Materials and Devices, Napoli, Italy ${ }^{2}$ Department of Engineering, University of Sannio, I-82100 Benevento, Italy
${ }^{3}$ MBDA Italia S.p.A., I-80070 Bacoli (NA), Italy
${ }^{4}$ Department of Physics «E. Pacini», University of Naples «Federico II», Napoli, Italy

SCIENTIFIC REPORTS 6, 19716 (2016)
We present the experimental characterization of mantle cloaks designed so as to minimize the e.m. scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. The experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as global scattering observables. Our results provide an illustration of the mantle-cloak mechanism and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering

Cloaking using metasurfaces:

(a) Dielectric cylinder of radius $\mathrm{Rd}=10 \mathrm{~mm}$ covered by a metasurface made of metallic(copper) strips substrate. Also shown is a photo of the fabricated prototype of finite (10 mm) thickness.
(b) Conducting (aluminium) cylinder covered by a metasurface made of metallic (copper) conformal square patches

Measured (real-part) electric-field maps for the conducting cylinder:

(a) Uncloaked cylinder at the nominal design frequency 3 GHz .
(b), (c) Cloaked cylinder at 3 GHz and outside the cloaking band (4 GHz)), respectively.

Reduction of the scattering cross section SW @ 3 GHz :

$$
S W=\frac{\oint_{C} \operatorname{Re}\left[E_{z}^{s c} \hat{\mathbf{z}} \times\left(\mathbf{H}^{s c}\right)^{*}\right] \cdot \hat{\mathbf{n}} d \ell}{\eta_{0}\left|E_{z}^{i n}\right|^{2}}
$$

(a) SW in semilog scale as a function of frequency for the dielectric cylinder in the absence (red markers) and presence (blue markers) of the mantle cloak.
(b) Corresponding SW ratio in dB scale (black markers).

