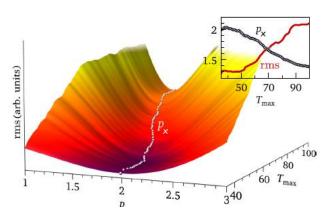


Optical Response of Sr₂RuO₄ Reveals Universal Fermi-Liquid Scaling and

Quasiparticles Beyond Landau Theory

D. Stricker¹, J. Mravlje², C. Berthod¹, R. Fittipaldi³, A. Vecchione³, A. Georges^{4,5,1} and D. van der Marel¹


 ¹Département de Physique de la Matière Condensée, Université de Genève, 24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland
²Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia
³CNR-SPIN, and Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, I-84084 Fisciano (Salerno) Italy
⁴Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
⁵Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau, France

PHYSICAL REVIEW LETTERS, 113, 087404 (2014)

The relevance of Fermi Liquid (FL) theory in solids is supported by a number of materials. Among transition-metal oxides, Sr₂RuO₄ represents a remarkable example. Indeed, transport properties display low-temperature FL characteristics [1] and there is evidence for p-wave symmetry of its superconducting phase [2] as in superfluid ³He. FL theory predicts for the inelastic optical relaxation rate to vanish according to the scaling law $1/\tau \propto (\hbar \omega)^2 + (p\pi k_B T)^2$, with p=2 [3,4]. Here, we report optical measurements of Sr₂RuO₄ demonstrating that the low-energy relaxation rate ($1/\tau$) of the conduction electrons in this system obeys scaling relations for its frequency (ω) and temperature (T) dependence in accordance with FL theory. We established experimentally for Sr₂RuO₄ the universal value p = 2 and demonstrated remarkable agreement between the experimental data and the theoretically derived scaling functions in the FL regime. We also performed DMFT calculations which yield excellent agreement with the measured optical spectra.

Fig. 1 Root-mean square deviation of the relaxation rate $M_2(\omega,T)$ from a linear dependence in ξ^2_p , for $\hbar\omega \leq 36$ meV and T \leq Tmax, as a function of p and T_{max}. The inset shows the value p_x and the rms at the minimum versus T_{max}. A value $p_x = 2$ is found below T_{max} ~ 40 K.

- [2] C. Kallin, Rep. Prog. Phys. 75, 042501 (2012).
- [3] R. N. Gurzhi, Sov. Phys. JETP 35, 673 (1959).
- [4] C. Berthod et al., Phys. Rev. B 87, 115109 (2013).

^[1] N. E. Hussey et al., Phys. Rev. B 57, 5505 (1998).