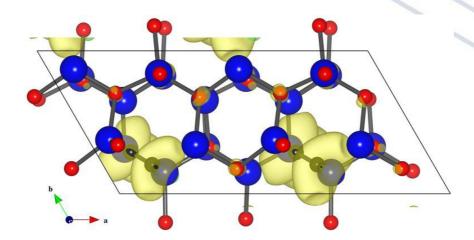




## Magnetism in C- or N-doped MgO and ZnO: A Density Functional Study of Impurity Pairs


Hua Wu<sup>1,2</sup>, Alessandro Stroppa<sup>3</sup>, Sung Sakong<sup>4</sup>, Silvia Picozzi<sup>3</sup>, Matthias Scheffler<sup>5</sup>, and Peter Kratzer<sup>4</sup>

<sup>1</sup>II. Physikalisches Institut, Universität zu Köln, Germany <sup>2</sup>Department of Physics, Fudan University, Shanghai, China <sup>3</sup>CNRSPIN, L'Aquila, Italy

<sup>4</sup>Fakultät für Physik and Center for Nanointegration (CeNIDE), Universität DuisburgEssen, Duisburg, Germany
<sup>5</sup>FritzHaberInstitut der Max Planck Gesellschaft, Berlin, Germany

Physical Review Letters 105.267203 (2010)

It is shown that substitution of C or N for O recently proposed as a way to create ferromagnetism in otherwise nonmagnetic oxide insulators is curtailed by formation of impurity pairs, and the resultant C2 spin =1 dimers as well as the isoelectronic N2 $^2$ + interact antiferromagnetically in ptype MgO. For Cdoped ZnO, however, we demonstrate using the Heyd-Scuseria-Ernzerhof hybrid functional that a resonance of the spinpolarized C2 pp $\pi$  \* states with the host conduction band results in a longrange ferromagnetic interaction. Magnetism of openshell impurity molecules is proposed as a possible route to d $^0$ -ferromagnetism in oxide spintronic materials.



Spin density at  $C_2$  dimers in ZnO.