Highlights

Novel superconducting and functional materials for energy and environment - 2019

Emerging proton conductivity at the interface between insulating NdGaO₃ and BaZrO₃

Francesca Zarotti^{1,2}, Roberto Felici², Vittorio Foglietti², Zhao Liu³, Nan Yang³, and Giuseppe Balestrino^{1,2}

DICII, Università di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy

د CNR-SPIN c/o DICII, Via del Politecnico 1, I-00133 Roma, Italy

School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China

PHYSICAL REVIEW MATERIALS 3 (2019) 103606

In a previous article (R. Felici, et al, Phys. Status Solidi B 256, 1800217 (2019)) we reported on the increased conductivity present at the interface between Y-doped BaZrO₃ deposited by pulsed laser deposition onto a NdGaO₃ wide-band-gap insulator substrate. We made the hypothesis that the enhancement of the conductivity was due to the presence at the interface of a regular network of misfit dislocations. In order to rule out effects induced by the conductivity of the Y doping of the BaZrO₃ layer, which is a well known ionic conductor, the present article deals with the interplay between structural properties of the interface region and emerging proton conductivity in thin films of insulating BaZrO₃ (BZO) deposited onto NdGaO₃ (NGO). Highresolution transmission electron microscopy and surface x-ray diffraction reveal the presence of a large number of misfit dislocations at the interface, allowing the full relaxation of the epitaxial strain. An analysis of the x-ray diffraction patterns reveals the strain relaxation occurs over a thickness of about 3 nm, equally divided between the film and the substrate. Electrical impedance spectroscopy measurements show a sizeable proton conductance, which does not depend on the thickness of the BaZrO₃ layer, supporting the idea that transport is only limited to the interface region. The conductance of these systems, about 0.5 S/cm at 650 °C with an activation energy of about 0.86 eV, can mainly be attributed to the defective interface.

Fig. 1: Surface x-ray diffraction intensity scans along the H direction of a 2.9-nm BZO film on NGO. The full red lines represent theoretical simulations of the diffraction experimental data. BZO, NGO, and MDN tags specify the diffraction peaks associated to the film, to the substrate, and to the misfit dislocation network, respectively.

