Highlights

Electronic and thermal transport from the nanoscale to the macroscale - 2019

Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer MoS2 Field-Effect Transistors

Filippo Giubileo¹, Laura lemmo^{1,2}, Maurizio Passacantando³, Francesca Urban^{1,2}, Giuseppe Luongo^{1,2}, Linfeng Sun⁴, Giampiero Amato⁵, Emanuele Enrico⁵, and Antonio Di Bartolomeo^{1,2}

¹CNR-SPIN c/o University of Salerno, via Giovanni Paolo II n. 132, Fisciano 84084, Italy
²Physics Department, University of Salerno, via Giovanni Paolo II n. 132, Fisciano 84084, Italy
³Department of Physical and Chemical Science, University of L'Aquila, and CNR-SPIN L'Aquila, L'Aquila, Italy
⁴Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
⁵Istituto Nazionale di Ricerca Metrologica, INRIM, Strada delle Cacce, Torino 10135, Italy

THE JOURNAL OF PHYSYCAL CHEMISTRY C 123 (2019) 454

Molybdenum disulfide (MoS₂) is a two-dimensional (2D) layered material, one of the transition-metal dichalcogenides with layers that are weakly held together by van der Waals forces. Energy band gap in MoS₂ varies from 1.2 eV (indirect) in the bulk to 1.8 – 1.9 eV (direct) in monolayer. Electrical characterization of few-layer MoS₂-based field-effect transistors (FET) with Ti/Au electrodes is performed in the vacuum chamber of a scanning electron microscope in order to study the effects of electron-beam irradiation on the transport properties of the device. A negative threshold voltage shift and a carrier mobility enhancement are observed and explained in terms of positive charges trapped in the SiO₂ gate oxide, during the irradiation. The transistor channel current is increased up to 3 orders of magnitudes after the exposure to an irradiation dose of 100 e – /nm². Finally, a complete field emission (FE) characterization of the MoS₂ flake, achieving emission stability for several hours and a minimum turn-on field of ≈20 V/µm with a field enhancement factor of about 500 at an anode – cathode distance of ~1.5 µm, demonstrates the suitability of few-layer MoS₂ as a two-dimensional emitting surface for cold-cathode applications.

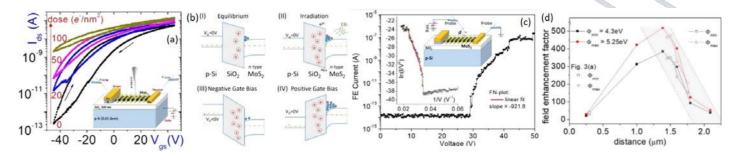


Fig. 1: (a) Transfer characteristics $I_{ds} - V_{gs}$ measured before and after electron beam irradiation. Inset: Layout of the device. (b) Schematic band diagram for the n-type MoS₂/SiO₂/p-Si FET. (I) Unbiased initial state; (II) unbiased state after irradiation which favors the formation of additional positive charged traps; (III) band alignment for $V_{gs} < 0$ V with carrier depleted channel; (IV) band alignment for $V_{gs} > 0$ V with carrier accumulation. (c) Field emission I – V curve measured at d = 300 nm. Left inset: Fowler-Nordheim plot. Upper inset: Setup for field emission measurements. (d) Dependence of the field enhancement factor on the distance d.

