Asymmetric Schottky Contacts in Bilayer MoS$_2$ Field Effect Transistors

Antonio Di Bartolomeo1,2, Alessandro Grillo1, Francesca Urban1,2, Laura Iemmo1,2, Filippo Giubileo2, Giuseppe Luongo1,2, Giampiero Amato3, Luca Croin3, Linfeng Sun4, Shi-Jun Liang5, and Lay Kee Ang6

1Physics Department, University of Salerno via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
2CNR-SPIN, c/o Università di Salerno- Via Giovanni Paolo II, 132 - 84084 - Fisciano (SA), Italy
3Istituto Nazionale di Ricerca Metrologica, INRIM—Strada delle Cacce, 10135, Torino, Italy
4Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
5National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, China
6Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), Singapore

The high-bias electrical characteristics of back-gated field-effect transistors with chemical vapor deposition synthesized bilayer MoS$_2$ channel and Ti Schottky contacts are discussed. It is found that oxidized Ti contacts on MoS$_2$ form rectifying junctions with ≈ 0.3 to 0.5 eV Schottky barrier height. To explain the rectifying output characteristics of the transistors, a model is proposed based on two slightly asymmetric back-to-back Schottky barriers, where the highest current arises from image force barrier lowering at the electrically forced junction, while the reverse current is due to Schottky barrier-limited injection at the grounded junction. The device achieves a photoresponsivity greater than 2.5 A W$^{-1}$ under 5 mW cm$^{-2}$ white-LED light. By comparing two- and four-probe measurements, it is demonstrated that the hysteresis and persistent photoconductivity exhibited by the transistor are peculiarities of the MoS$_2$ channel rather than effects of the Ti/MoS$_2$ interface.

Fig. 1: a) SEM top view of a CVD-synthesized bilayer MoS$_2$ with Ti/Au contacts. b) Schematic of the back-gate transistors. c) Raman spectrum of the bilayer MoS$_2$. d) Map of the difference between A$_{1g}$ and E$_{2g}$ peaks of micro-Raman spectra.

Fig. 2: Band diagram based on two back-to-back Schottky barriers. The forward current for negative V_{ds} is due to the image force barrier lowering at the forced junction, while the lower (reverse) current at $V_{ds} > 0$ V is limited by the low electric field at the grounded junction.