Unusual thermoelectric properties of BaFe$_2$As$_2$ in high magnetic fields

M. Meinero1,2, F. Caglieris2, G. Lamura2, I. Pallecchi2, A. Jost4, U. Zeitler4, S. Ishida5, H. Eisaki5 and M. Putti1,2

1Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
2CNR-SPIN, C.so F. M. Perrone, 24, 16152 Genova, Italy
3IFW Dresden, Helmholtz Strasse 33 Dresden, Germany
4High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
5National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan

PHYSICAL REVIEW B 98 (2018) 155116

Electric and thermoelectric transport properties are mutually intertwined in diffusive transport equations. In particular, in high mobility multi-band systems an anomalous behavior may occur, which can be tracked down to the properties of the individual bands. Here, we present magneto-electric and magneto-thermoelectric transport properties of a BaFe$_2$As$_2$ high quality single crystal, for different magnetic field directions (parallel and perpendicular to the c-axis of the crystal) up to 30 T. We detect an anomalous field dependence of the Seebeck coefficient (Fig. 1a and 1c) and a giant Nernst effect (Fig. 1b and 1d). The extraction of the Peltier tensor coefficients α_{xx}, α_{xy} and α_{xz} (Fig. 2) allows to disentangle the main transport mechanisms into play. The large α_{xy} and α_{xz} values and their field dependence provide evidence of the presence of a high mobility band, compatible with a Dirac dispersion band, crossing the Fermi level and suggest a possible 3-dimensional nature of the Dirac Fermions.

Fig. 1: Magnetic field dependences up to 30 T in the temperature range 5-80K of the Seebeck/Nernst coefficient when B is applied parallel (a/b) and perpendicular (c/d) to the c-axis of the crystal.

Fig. 2: Magnetic field dependences up to 30 T in the temperature range 5-80K of α_{xy}. Dashed lines are the fitting curves of α_{xy} using $\alpha_{xy} = A\mu^2B/(1 + (\mu B)^2)$, where μ is the carrier mobility. Inset: temperature dependence of μ obtained by the fitting.