Highlights

Advanced materials and techniques for organic electronics, biomedical and sensing applications - 2018

Temperature- and doping-dependent nanoscale Schottky barrier height at the Au/Nb: SrTiO₃ interface

R. Buzio¹, A. Gerbi¹, E. Bellingeri¹, and D. Marré^{1,2}

¹CNR-SPIN, C.so F.M. Perrone 24, 16152 Genova, Italy ²Physics Department, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy

APPLIED PHYSICS LETTERS 113 (2018) 141604

We use ballistic electron emission microscopy to investigate prototypical Au/Nb-doped SrTiO₃ (NSTO) Schottky barrier diodes for different temperatures and doping levels. To this end, ultrathin Au overlayers are thermally evaporated onto TiO₂-terminated NSTO single crystal substrates. We show that at room temperature, regardless of the nominal doping, rectification is controlled by a spatially inhomogeneous Schottky barrier height (SBH), which varies on a length scale of tens of nanometers according to a Gaussian distribution with a mean value of 1.29–1.34 eV and the standard deviation in the range of 80–100 meV. At lower temperatures, however, doping effects become relevant. In particular, junctions with a low Nb content of 0.01 and 0.05 wt.% show an ~300 meV decrease in the mean SBH from room temperature to 80 K, which can be explained by an electrostatic analysis assuming a temperature-dependent dielectric permittivity for NSTO. In contrast, this model fails to predict the weaker temperature dependence of SBH for junctions based on 0.5 wt.% NSTO. Our nanoscale investigation demands to reassess conventional models for the NSTO polarizability in high-intensity electric fields. Furthermore, it contributes to the comprehension and prediction of transport in metal/SrTiO₃ junctions and devices.

Fig.1: (a) Schematic diagram of the Au/NSTO junction and the experimental setup for BEEM measurements. (b) STM topography and (c) BEEM map acquired simultaneously over a representative Au region (I_T = 45 nA, V_T = -1.85 V, T = 291 K, x_{Nb} =0.01 wt.%). The arrows highlight a few localized grains with high BEEM contrast.

Fig.2: Representative raw spectra acquired at different temperatures on Au/NSTO junctions. (c) Dual parameter (Φ_{B0} , R) distributions (top) and Φ_{B0} histograms (bottom) for x_{Nb} =0.01 wt.%,. The average SBHs at 291 K (1.34 eV) and 80 K (1.07 eV). (d) as in (c) but for x_{Nb} =0.5 wt.%.

Fig.3: (a) Temperature dependence of the spatially averaged SBH Φ_{B0} measured by BEEM for Au/NSTO junctions with two different doping levels. The solid and dashed lines are theoretical predictions with the metal-insulator-semiconductor (MIS) model. (b) Schematics of the energy band diagram for the low-doped unbiased junction (not in scale).

