Highlights

Other Materials -2017

Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect

A. Di Bartolomeo^{1,2}, G. Luongo¹, F. Giubileo², N. Funicello¹, G. Niu³, T. Schroeder^{4,5}, M. Lisker⁴ and G. Lupina⁴

¹Physics Department 'E. R. Caianiaello', University of Salerno, via Giovanni Paolo II, Fisciano 84084, Italy ²CNR-SPIN Salerno, via Giovanni Paolo II, Fisciano 84084, Italy

³Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China ⁴IHP Microelectronics, Im Technologie Park 25, 15236 Frankfurt (Oder), Germany

⁵Brandenburg University of Technology, Institute of Physics, Konrad Zuse Str. 1, 03046 Cottbus, Germany

2D MATERIALS 4 (2017) 025075

We propose a hybrid device consisting of a graphene/silicon (Gr/Si) Schottky diode in parallel with a Gr/SiO₂/Si capacitor for high-performance photodetection. The device, fabricated by transfer of commercial graphene on low-doped n-type Si substrate, achieves a photoresponse as high as 3 AW⁻¹ and a normalized detectivity higher than 3.5×10^{12} cmHz^{1/2} W⁻¹ in the visible range. It exhibits a photocurrent exceeding the forward current because photo-generated minority carriers, accumulated at Si/SiO₂ interface of the Gr/SiO₂/Si capacitor, diffuse to the Gr/Si junction. We show that the same mechanism, when due to thermally generated carriers, although usually neglected or disregarded, causes the increased leakage often measured in Gr/Si heterojunctions. We perform extensive I–V and C-V characterization at different temperatures and we measure a zero-bias Schottky barrier height of 0.52 eV at room temperature, as well as an effective Richardson constant A^{**} = 4×10⁻⁵ A cm⁻² K⁻² and an ideality factor n≈3.6, explained by a thin (<1 nm) oxide layer at the Gr/Si interface.

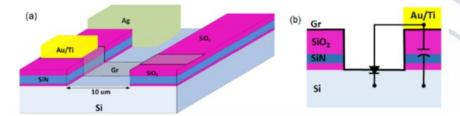


Fig.1: (a) 3D schematic view and (b) cross-section of Gr/Si diode in parallel with a Gr/SiO₂–Si₃N₄–SiO₂/Si MOS capacitor.

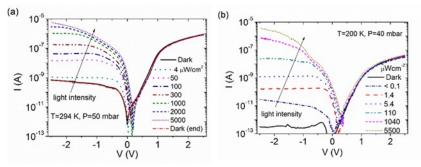


Fig.2: I-V characteristics of the Gr/Si junction for different illumination levels at T=294 K, P=50 mbar (a) and at T=200 K, P=40 mbar (b) after 5 days vacuum anneal.

