Highlights

Superconductivity - 2016

Research Update: Structural and transport properties of (Ca,La)FeAs2 single crystal

1CNR-SPIN and Università di Genova, via Dodecaneso 33, I-16146 Genova, Italy
2Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
3National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
4National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
5Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
6Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstr. 5-13, 81377 München (Germany)
7Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, C, Japan

APL Materials 4, 020702 (2016)

Structural and transport properties in the normal and superconducting state are investigated in a Ca$_{0.8}$La$_{0.2}$FeAs$_2$ single crystal with $T_c=27$ K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J_c for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as $J_c(B=0)=10^5$ A/cm2. This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresitivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.

Left: Resistivity vs T measurement of a Ca$_{0.8}$La$_{0.2}$FeAs$_2$ single crystal. Inset: IB image of the FIB patterned crystal. Center: Resistivity transition for magnetic fields $B=0$ and $B=7$T, applied both parallel ($B||c$) and perpendicular ($B \perp c$) to the c-axis. Inset: B_{c2} up to $B_{c2}=7$T for $B||c$ and $B \perp c$. Right: Transport J_c measurements at fixed temperatures as a function of $B||c$ and $B \perp c$. Inset: $V-I$ curves measured at $T=3$K at different perpendicular ($B^c||c$) fields.