Waveguide Characterisation of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

A. Vitiello¹,², M. Moccia², G.P. Papari¹,³, G. D’Alterio³, R. Vitiello³, V. Galdi² and A. Andreone¹,³

¹CNR-SPIN Institute for Superconductors, Innovative Materials and Devices, Napoli, Italy
²Department of Engineering, University of Sannio, I-82100 Benevento, Italy
³MBDA Italia S.p.A., I-80070 Bacoli (NA), Italy
⁴Department of Physics «E. Pacini», University of Naples « Federico II», Napoli, Italy

SCIENTIFIC REPORTS 6, 19716 (2016)

We present the experimental characterization of mantle cloaks designed so as to minimize the e.m. scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. The experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as global scattering observables. Our results provide an illustration of the mantle-cloak mechanism and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering.

Cloaking using metasurfaces:

(a) Dielectric cylinder of radius Rd = 10 mm covered by a metasurface made of metallic (copper) strips substrate. Also shown is a photo of the fabricated prototype of finite (10 mm) thickness.
(b) Conducting (aluminium) cylinder covered by a metasurface made of metallic (copper) conformal square patches.

Measured (real-part) electric-field maps for the conducting cylinder:
(a) Uncloaked cylinder at the nominal design frequency 3 GHz.
(b), (c) Cloaked cylinder at 3 GHz and outside the cloaking band (4 GHz), respectively.

Reduction of the scattering cross section SW @ 3 GHz:

\[SW = \frac{\int_{C} Re[E_z^s \times (H^s)^*] \cdot d\ell}{\eta_0 |E_z^0|^2} \]

(a) SW in semilog scale as a function of frequency for the dielectric cylinder in the absence (red markers) and presence (blue markers) of the mantle cloak.
(b) Corresponding SW ratio in dB scale (black markers).