

CNR-SPIN, Napoli, Italy
Département de Physique de la Matière Condensée, University of Geneva, Switzerland
European Synchrotron Radiation Facility Grenoble Cedex, France
Institute of Condensed Matter Physics, Lausanne, Switzerland
Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
CNR-SPIN and Dipartimento di Fisica, Università di Genova, Genova, Italy

Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research on diluted semiconductors and complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO$_3$ and two insulating polar oxides, i.e. BiMnO$_3$ and LaAlO$_3$. By using polarization dependent x-ray absorption spectroscopy, we find in both cases that the magnetic order is stabilized by a negative exchange interaction between the electrons transferred at the interface and localized magnetic moments. These local magnetic moments are associated to Ti$^{3+}$ ions at the interface itself, for LaAlO$_3$/SrTiO$_3$, and to Mn$^{3+}$ ions in the overlayer, for BiMnO$_3$/SrTiO$_3$. In LaAlO$_3$/SrTiO$_3$ magnetism is quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies. These results provide a unified picture of magnetism in titanate interfaces and help reconciling two conflicting phenomena such as ferromagnetism and superconductivity, both observed in LaAlO$_3$/SrTiO$_3$.

Fig.
Linear and circular dichroism in the XAS of SrTiO$_3$ interfaces. (a) Schematics of the experimental setup: by absorption of a photon (zigzag red arrow) of appropriate energy and known polarization, a Ti or Mn 2p electron is promoted to the 3d states. The external magnetic field B is always parallel to the beam direction and the sample can be oriented at normal (0) or 70° incidence. (b) The crystal structure of an ideal 4 unit cell polar insulating oxide film (LaAlO$_3$ or BiMnO$_3$) deposited on TiO$_2$ terminated SrTiO$_3$ single crystal, and a pictorial view of the outcomes of Ti L$_{2,3}$ XMCD and XLD, which provide insight on the symmetry and occupation of lowest-lying 3d states (Ti$^{3+}$ orbitals in the picture), and on the consequent magnetic moments (yellow arrow).