Suppression of the critical temperature in NdFeAs(OF) single crystal by Kondo-like scattering induced by irradiation

C. Tarantini1, M. Putti3, A. Gurevich1, Y. Shen2, R.K. Singh2, J.M. Rowell2, N. Newman2, D.C. Larbalestier1, Peng Cheng4, Ying Jia4, Hai-Hu Wen4

1National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
2Dept of Materials Science and Engineering, Arizona State University, Tempe, AZ, USA
3CNR-INFM-LAMIA and Dept of Physics, University of Genova, Italy
4Institute of Physics and National Laboratory of Condensed Matter Physics, Chinese Academy of Sciences, Beijing, China

The paper report the first comprehensive investigation of the suppression of the critical temperature T_c of NdFeAs(OF) single crystal by disorder induced by α-particle irradiation. Our data indicate that irradiation defects produce both nonmagnetic and magnetic scattering, resulting in the Kondo-like excess resistance $\Delta \rho(T) \propto \ln T$ over 2 decades in temperatures above T_c.

Despite high densities of irradiation defects, the dose at which T_c is suppressed to zero is comparable to that for MgB$_2$ but is well above the corresponding values for cuprates. Such remarkably weak T_c suppression by strong magnetic and nonmagnetic disorder may reveal novel features of superconductivity and magnetism in pnictides.